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Abstract

Atmospheric chemical transport models (CTMs) are essential tools for the study of air pollution, for environmental
policy decisions, for the interpretation of observational data, and for producing air quality forecasts. Many air quality
studies require sensitivity analyses, i.e., the computation of derivatives of the model output with respect to model param-
eters. The derivatives of a cost functional (defined on the model output) with respect to a large number of model param-
eters can be calculated efficiently through adjoint sensitivity analysis. While the traditional (first order) adjoint models give
the gradient of the cost functional with respect to parameters, second order adjoint models give second derivative infor-
mation in the form of products between the Hessian of the cost functional and a vector (representing a perturbation in
sensitivity analysis, a search direction in optimization, an eigenvector, etc.).

In this paper we discuss the mathematical foundations of the discrete second order adjoint sensitivity method and pres-
ent a complete set of computational tools for performing second order sensitivity studies in three-dimensional atmospheric
CTMs. The tools include discrete second order adjoints of Runge–Kutta and of Rosenbrock time stepping methods for stiff
equations together with efficient implementation strategies. Numerical examples illustrate the use of these computational
tools in important applications like sensitivity analysis, optimization, uncertainty quantification and the calculation of
directions of maximal error growth in three-dimensional atmospheric CTMs.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The chemical composition of the atmosphere is being significantly perturbed by anthropogenic emissions of
trace gases and aerosols. This has important implications for urban, regional and global air quality, for human
health and for climate change. Atmospheric chemical transport models (CTMs) are essential tools for the
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study of air pollution, for environmental policy decisions, for the interpretation of observational data, and for
producing air quality forecasts.

Many air quality studies require the computation of derivatives of the model output with respect to model
parameters. Two important applications that require derivatives are sensitivity analysis and data assimilation.
Sensitivity analyses are useful to identify those parameters that have the largest influence on the results of the
simulation. Air quality predictions have large uncertainties associated with incomplete information on emis-
sions, initial and boundary conditions, and with incomplete science elements; improvements in the predictive
capabilities of CTMs require them to be better constrained by observational data through data assimilation.
In a variational approach the data assimilation problem is posed as a large-scale minimization problem, whose
numerical solution requires the gradient of the cost function with respect to model parameters.

The derivatives of a cost functional (defined on the model output) with respect to a large number of model
parameters can be calculated efficiently through adjoint sensitivity analysis. While the traditional (first order)
adjoint models give the gradient of the cost functional (first order derivatives with respect to parameters), sec-
ond order adjoint models give second derivative information in the form of products between the Hessian of
the cost functional and a user defined vector.

Second order adjoints have been discussed in the literature in several contexts. The theory of second order
adjoints and its applications in numerical weather prediction has been developed in [74]. Second order adjoints
have been used in data assimilation within the numerical optimization algorithms [46,47,60,73] and for optimi-
zation in a reduced control space [19]. Applications of second order adjoints in optimal control are discussed in
[16,63]. Hessian vector products have been used in the calculation of Hessian singular vectors in the context of
data assimilation [6,43,73]. The use of Hessian information for uncertainty quantification have been explored in
[3,47]. The Hessian spectrum has been used to precondition the solution of ill-posed inverse problems [2].

Ozyurt and Barton [60,61] have discussed the evaluation of second order adjoints for embedded functionals
of stiff systems. Their approach is to derive the second order adjoint ODE and then solve it efficiently together
with the forward, the tangent linear, and the first order adjoint models using backward differentiation formu-
las (DASSL). Different Jacobian matrices appearing in the definition of the second order adjoint ODE are
derived from the original ODE using automatic differentiation. The LU factorizations of the forward model
solution are reused in the tangent linear and the first and second order adjoint solutions, which leads to a com-
putationally efficient process. The current paper discusses the calculation of second order adjoints for stiff
ODEs arising in chemical kinetic models. This work is different from [60,61] as we focus on discrete second
order adjoints and we use one step methods of Runge–Kutta and Rosenbrock types. Moreover, we propose
a transformation that eliminates the need of costly quadrature evaluations in [60,61].

Most applications to date have focused on continuous second order adjoints (obtained by linearizing the
underlying ordinary or partial differential equation models) [46,60,74]. Discrete second order adjoints
(obtained by linearizing the numerical approximations of the model) have been obtained by automatic differ-
entiation [16,35,59]. Other applications of automatic differentiation to obtain high order derivatives are dis-
cussed in [7,30,32,41].

In this paper we discuss the mathematical foundations of the discrete second order adjoint sensitivity
method and present a complete set of computational tools for performing second order sensitivity studies
in three-dimensional atmospheric CTMs. The tools include discrete second order adjoints of Runge–Kutta
and of Rosenbrock time stepping methods for stiff equations together with efficient implementation strategies.
Numerical examples show how second order adjoints can extend the range of validity of sensitivity analyses
for nonlinear chemical kinetic models. The use of second order adjoint information in the optimization pro-
cess for chemical data assimilation is exemplified on a simulation of real atmospheric conditions with real
observations. We also illustrate second order adjoint based methodologies for the quantification of uncer-
tainty in the chemical fields after data assimilation, and for the computation of the most important directions
of error growth in a three-dimensional atmospheric CTM.

The main contributions of this work are the derivation of efficient discrete second order adjoint schemes for
Runge–Kutta and Rosenbrock stiff solvers, the construction of second order adjoints for a three-dimensional
chemical transport model, and the illustration of how these computational tools are essential in important
applications like sensitivity analysis, optimization, uncertainty quantification and the calculation of directions
of maximal error growth in three-dimensional atmospheric CTMs.
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The paper is organized as follows. Section 2 introduces the atmospheric chemistry and transport models,
their solution by the operator splitting approach and discusses the tangent linear and discrete adjoint models.
Section 3 develops the mathematical framework for second order adjoint sensitivity analysis. Discrete second
order adjoints for stiff ODEs are developed based on Runge–Kutta methods (Section 3.3) and on Rosenbrock
methods (Section 3.4). Section 4 discusses the construction of the discrete second order adjoint for the trans-
port system. Section 5 illustrates important applications of second order adjoints, and Section 6 draws the con-
clusions of this work.

2. Atmospheric chemistry and transport modeling

Consider a domain X which covers a region of the atmosphere. Let~n be the outward normal vector on each
point of the boundary oX. At each time moment the boundary of the domain is partitioned into
oX ¼ CIN [ COUT [ CGR where CGR is the ground level portion of the boundary; CIN is the set of (lateral or
top) boundary points where u �~n 6 0 and COUT the set where u �~n > 0. In the following u is the wind field vec-
tor, K the turbulent diffusivity tensor, q the air density in moles/cm3 and ci the mole-fraction concentration of
chemical species i (1 6 i 6 ns, with ns the total number of species). The density of this species is q ci (moles/
cm3). Let V dep

i be the deposition velocity of species i, Qi the rate of surface emissions and Ei the rate of elevated
emissions for this species. The rate of chemical transformations fi depends on absolute concentration values;
the rate at which mole-fraction concentrations change is then fiðqcÞ=q.

The evolution of concentrations in time is described by the material balance equations
oci

ot
¼ �u � rci þ

1

q
r � ðqKrciÞ þ

1

q
fiðqcÞ þ Ei; t0

6 t 6 tF; ð1aÞ

ciðt0; xÞ ¼ c0
i ðxÞ; ð1bÞ

ciðt; xÞ ¼ cIN
i ðt; xÞ for x 2 CIN; ð1cÞ

K
oci

on
¼ 0 for x 2 COUT; ð1dÞ

K
oci

on
¼ V dep

i ci � Qi for x 2 CGR for all 1 6 i 6 ns: ð1eÞ
We refer to the system (1a)–(1e) as the forward model. To simplify the presentation, in this paper we consider
as parameters the initial state c0 of the model; it is known that this does not restrict the generality of the for-
mulation [67]. The solution of the forward model c ¼ cðt; c0Þ is uniquely determined once the model param-
eters c0 are specified.

The forward model (1a)–(1e) is solved by a sequence of N timesteps of length Dt taken between the initial
time t0 and the final time tN ¼ tF. At each time step one calculates the numerical approximation ckðxÞ � cðtk; xÞ
at tk ¼ t0 þ kDt such that
ckþ1 ¼ N kþ1 � ck; cN ¼
YN�1

k¼0

N kþ1 � c0: ð2Þ
The numerical solution operator N is based on an operator splitting approach, where the transport steps
along each direction and the chemistry steps are taken successively. Operator splitting is standard practice
in computational air pollution modeling [44]. It allows the development of the forward, tangent linear and
adjoint models with relative ease. Formally, if we denote by T X , T Y , T Z the numerical solution operators
for directional transport along the X, Y, Z directions, respectively, and by C the solution operator for chem-
istry in the time interval ½tk; tkþ1�, we have
N kþ1 ¼ T Dt=2
X � T Dt=2

Y � T Dt=2
Z � CDt � T Dt=2

Z � T Dt=2
Y � T Dt=2

X : ð3Þ

The numerical errors introduced by splitting are an important component of model errors (see e.g., [70]). In
this paper, for the purpose of 4D-Var data assimilation, we assume the model errors to be small. Indeed, in
computational air pollution modeling the splitting errors oscillate with the diurnal cycle and do not grow
unboundedly for evolving time [44].
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A perturbation dc0 in the parameters c0 propagates in time according to the tangent linear discrete
model
dckþ1 ¼ N
0
kþ1 � dck ¼ T 0

Dt=2

X � T 0Dt=2

Y � T 0Dt=2

Z � C0Dt � T 0Dt=2

Z � T 0Dt=2

Y � T 0Dt=2

X � dck; ð4Þ
where N
0

is the tangent linear operator associated with the solution operator N . For an operator splitting
approach (3) N

0
is built from the tangent linear transport and chemistry operators T 0 and C0.

To each tangent linear operator corresponds an adjoint operator (denoted here with a star superscript). The
(discrete) adjoint model is
kk ¼ N
0�
kþ1 � kkþ1 þ /k ¼ T 0�

Dt=2

X � T 0�Dt=2

Y � T 0�Dt=2

Z � C0�Dt � T 0�Dt=2

Z � T 0�Dt=2

Y � T 0�Dt=2

X � kkþ1 þ /k: ð5Þ
The forcing function / and the initial values kN are chosen such that the adjoint variables are sensitivities of a
given cost functional with respect to the state variables.

The numerical experiments in this paper use the state-of-the-art regional atmospheric photochemistry and
transport model sulfur transport Eulerian model (STEM) [?] to solve the mass-balance equations for concen-
trations of trace species (2) in order to determine the fate of pollutants in the atmosphere. STEM has first
order adjoint capabilities [66] and has been used extensively in real-life chemical data assimilation studies
[14,40,9,15]. In this paper we endow STEM with the capability to compute second order adjoints and we illus-
trate several applications of this capability.

3. Second order adjoints for stiff ODEs

In this section we review the derivation of continuous and discrete second order adjoint equations (SOA) in
the context of ordinary differential equations (ODEs).

3.1. Continuous second order adjoints

Consider a general (stiff) ODE
c0 ¼ Rðt; c; pÞ; cðt0Þ ¼ c0ðpÞ; t0
6 t 6 tF:
For our application the vector yðtÞ 2 Rns represents the time evolving concentrations of the chemical species
starting from the initial configuration c0. p 2 Rnp is a vector of model parameters. The rate of change in the
concentrations c is determined by the nonlinear production/loss function R ¼ ½R1; . . . ;Rns �

T.
Consider a cost functional
W ¼
Z tF

t0
hðcðtÞ; pÞdt
defined on the time evolving concentrations. We want to efficiently obtain the first and second order deriva-
tives of the cost function with respect to model parameters,
oW
opi

;
o2W

opiopj

; 1 6 i; j 6 np:
Note that the parameters can be transformed into variables by appending additional formal evolution equa-
tions for parameters p0 ¼ 0. This allows to always reduce the sensitivity of the cost functional with respect to
parameters to the sensitivity of the cost functional with respect to initial conditions. Moreover, the general
cost functional defined as an integral of a function of the state along the trajectory can be reformulated as
a cost functional defined on the state at the final time by appending an additional variable h and an equation
that performs the time integration. The equivalent system becomes:
c

p

h

2
64
3
75
0

¼
Rðt; c; pÞ

0

hðc; pÞ

2
64

3
75;

cðt0Þ
pðt0Þ
hðt0Þ

2
64

3
75 ¼

c0ðpÞ
p

0

2
64

3
75; W ¼ hðtFÞ:
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Without loss of generality the mathematical formulation of the stiff nonlinear differential equations which con-
stitute the forward model is
dy
dt
¼ f ðt; yÞ; yðt0Þ ¼ y0; t0

6 t 6 tF: ð6Þ
The solution is yðtÞ ¼ ½cT; pT; h�T 2 Rn, n ¼ ns þ np þ 1 and the model parameters are the initial conditions y0.
Again without loss of generality the cost functional is defined as a function of the state at the final time
Wðy0Þ ¼ gðyðtFÞÞ: ð7Þ

In this paper we assume that the functions f and g are at least twice continuously differentiable.

We are interested to efficiently evaluate the first and second order sensitivities of the cost functional (7) with
respect to changes in initial conditions
oW
oy0

i

; and
o

2W
oy0

i oy0
j

; 1 6 i; j 6 n:
Throughout this paper vectors will be represented in column format and an upper script ð�ÞT will denote the
transposition operator. The gradient of a scalar function (e.g., oW=oy0) is a row vector. We denote the Jaco-
bian of the time derivative function in (6) by
J i;jðt; yÞ ¼
ofiðt; yÞ

oyj

; 1 6 i; j 6 n: ð8Þ
The Hessian of the time derivative function in (6) is a 3-tensor of second order derivatives
Hi;j;kðt; yÞ ¼
oJ i;jðt; yÞ

oyk

¼ o2fiðt; yÞ
oyjoyk

¼ o2fiðt; yÞ
oykoyj

¼ H i;k;jðt; yÞ; 1 6 i; j; k 6 n: ð9Þ
The Hessian allows to express the derivatives of the Jacobian times a user vector. As shown in Appendix A for
any vectors u and v we have that
o

oy
½Jðt; yÞ � u� � v ¼ ðHðt; yÞ � uÞ � v ¼ ðHðt; yÞ � vÞ � u;

o

oy
½J Tðt; yÞ � u� � v ¼ ðuT � Hðt; yÞÞ � v ¼ ðHðt; yÞ � vÞT � u;
where the dot operator (�) denotes the regular tensor–vector product.
Small perturbations of the solution (due to infinitesimally small changes dy0 in the initial conditions)
dyðtÞ ¼ oyðtÞ
oy0
� dy0 ð10Þ
propagate forward in time according to the tangent linear model
ddy
dt
¼ Jðt; yÞ � dy; dy t0

� �
¼ dy0; t0

6 t 6 tF: ð11Þ
The change in the cost functional (7) due to the small change dy0 in the initial conditions is
dW ¼ og
oy
ðtFÞ � dyðtFÞ ¼ oW

oy0
� dy0:
In the forward sensitivity analysis each integration of the tangent linear model (11) allows to compute the dot
product of the gradient oW=oy0 with the vector of initial perturbations dy0. The gradient is recovered after n

tangent linear model (11) integrations initialized with linearly independent perturbation vectors.
A more efficient way of calculating the gradient oW=oy0 is provided by the first order adjoint model

[20,65,66]
dk
dt
¼ �J Tðt; yÞ � k; kðtFÞ ¼ og

oy
ðyðtFÞÞ; tF P t P t0: ð12Þ
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The adjoint variables kðtÞ 2 Rn represent the sensitivities of the cost functional with respect to (changes in) the
model solution
kðtÞ ¼ oW
oyðtÞ

� �T

;

and in particular we have that the adjoint variable at the initial time is the transposed gradient of the cost
functional with respect to initial conditions
kðt0Þ ¼ oW
oy0

� �T

:

We are now interested in obtaining the second order derivatives of the cost functional with respect to initial
conditions. The Hessian of the cost functional is
Hi;j ¼
o2W

oy0
i oy0

j

¼ o

oy0
j

oW
oy0

i

� �
¼ okiðt0Þ

oy0
j

; 1 6 i; j 6 n:
The Hessian has n2 elements. In many problems (including our target application, atmospheric chemical trans-
port problems) n is very large and computing the entire Hessian is not practical. We will therefore look to
compute Hessian times vector products r ¼ H � u for any user-defined vector u
ðH � uÞi ¼
Xn

j¼1

Hi;juj ¼
Xn

j¼1

okiðt0Þ
oy0

j

uj ¼
okiðt0Þ

oy0
� u: ð13Þ
To compute such products we consider the variation of the cost functional (7) with respect to changes in initial
conditions as a new cost functional that depends on both the initial state and on the initial perturbation
dWðy0; dy0Þ ¼ oW
oy0
� dy0 ¼ kTðt0Þ � dy0 ¼

Xn

i¼1

oW
oy0

i

dy0
i : ð14Þ
The gradient of dW with respect to changes in y0 can be computed by the adjoint method. This gradient rep-
resents the product of the Hessian of W times the initial perturbation vector,
odW
oy0

� �
j

¼ odW
oy0

j

¼ o

oy0
j

Xn

i¼1

oW
oy0

i

dy0
i

 !
¼
Xn

i¼1

o
2W

oy0
i oy0

j

dy0
i ¼

Xn

i¼1

o
2W

oy0
j oy0

i

dy0
i ¼

Xn

i¼1

Hj;idy0
i ¼ ðH � dy0Þj:

ð15Þ

From (15) we see that the Hessian-vector products can be computed as the first order adjoint gradients of the
cost functional dW, if the tangent linear model is initialized with the user-defined vector dy0 ¼ u.

The cost functional (14) depends on both y and dy. Consequently, to evaluate dW one needs to consider
both the forward (6) and the tangent linear model (11) evolving together forward in time:
d

dt

y

dy

� �
¼

f ðt; yÞ
Jðt; yÞ � dy

� �
;

y

dy

� �
ðt0Þ ¼ y0

u

� �
; t0

6 t 6 tF: ð16Þ
The Jacobian of the extended system (16) is
Jðt; yÞ 0
o
oy ðJðt; yÞ � dyÞ Jðt; yÞ

" #
¼

Jðt; yÞ 0

Hðt; yÞ � dy Jðt; yÞ

� �
:

The adjoint of the (tangent linear model of the) extended system (16) for the cost function (14) reads
d

dt

r

k

� �
¼ �

Jðt; yÞ 0

Hðt; yÞ � dy Jðt; yÞ

� �T

�
r

k

� �

¼ �J Tðt; yÞ � r� ðHðt; yÞ � dyÞT � k
�J Tðt; yÞ � k

" #
;
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r

k

� �
ðtFÞ ¼

d2g
dy2 ðyðtFÞÞ � dyðtFÞ

dg
dy ðyðtFÞÞ

2
4

3
5; tF P t P t0: ð17Þ
The equation for k in (17) is the first order adjoint equation (12).
The first equation in (17) is the second order adjoint ordinary differential equation and defines the time evo-

lution of the second order adjoint variable r,
dr
dt
¼ �J Tðt; yÞ � r� ðHðt; yÞ � dyÞT � k; rðtFÞ ¼ d2g

dy2
ðyðtFÞÞ � dyðtFÞ: ð18Þ
By the definition of first and second order adjoints we have that
rðtÞ ¼ dkðtÞ ¼ okðtÞ
oy0
� dy0 ¼ okðtÞ

oyðtÞ �
oyðtÞ
oy0
� dy0 ¼ okðtÞ

oyðtÞ � dyðtÞ:
Consequently the second order adjoint equation (18) can also be obtained by formally taking the variation of
the first order adjoint equation (12) with respect to changes dy0 in the initial conditions y0
o

oy0

dk
dt

� �
� dy0 ¼ o

oy0
ð�J Tðt; yÞ � kÞ � dy0;

d

dt
ok
oy0
� dy0

� �
¼ o

oy
ð�J Tðt; yÞ � kÞ � oyðtÞ

oy0
� dy0;

dr
dt
¼ o

oy
ð�J Tðt; yÞ � kÞ � dyðtÞ ¼ �J Tðt; yÞ � r� ðHðt; yÞ � dyÞT � k;

o

oy0

dg
dy
ðyðtFÞÞ

� �
� dy0 ¼ dg

dy2
ðyðtFÞÞ � oyðtFÞ

oy0
� dy0 ¼ d2g

dy2
ðyðtFÞÞ � dyðtFÞ:
3.2. Discrete second order adjoints

Similar considerations hold for the discrete system
yk ¼ N kðyk�1Þ; k ¼ 1; . . . ;N ; y0 given ð19Þ

and the discrete cost function of the form
Wðy0Þ ¼ gðyN Þ: ð20Þ

The discrete system (19) represents a numerical discretization of (6) with a one-step numerical method. The
cost function (20) is defined on the numerical solution, and approximates the continuous cost function (7) de-
fined on the exact solution.

We denote the Jacobian matrix of the discrete time-marching operator by N
0
kðyÞ ¼ oN k=oy, and the Hes-

sian three-tensor by N
00
kðyÞ ¼ o

2N k=oy2. The tangent linear model of (19) is
dyk ¼ N
0
kðyk�1Þ � dyk�1; k ¼ 1; . . . ;N ; dy0 ¼ u: ð21Þ
The extended adjoint of the combined (19)–(21) for the cost function dW reads
rk�1

kk�1

� �
¼
�ðN 0

kðyk�1ÞÞT � rk � ðN 00
kðyk�1Þ � dyk�1ÞT � kk

�ðN 0
kðyk�1ÞÞT � kk

" #
;

rN

kN

� �
¼

o2g
oy2 ðyN Þ � dyN

og
oy ðyN Þ

2
4

3
5; N P k P 1:

ð22Þ
At the end of the backward in time integration (22) provides the gradient and the Hessian vector product
k0 ¼ oW
oy0

� �T

; r0 ¼ o2W

ðoy0Þ2
� u:
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We will now construct specific discrete second order adjoints for the cases where the numerical discretizations
(19) are of Runge–Kutta and of Rosenbrock types.

3.3. Implicit Runge–Kutta methods

A general s-stage Runge–Kutta method [38, Section II.1] advances the numerical solution yk 2 Rn at time tk

to the solution ykþ1 2 Rn at time tkþ1 ¼ tk þ h using the formula:
ykþ1 ¼ yk þ h
Xs

i¼1

biki; T i ¼ tk þ cih; Y i ¼ yk þ h
Xs

j¼1

aijkj;

ki ¼ f ðT i; Y iÞ; i ¼ 1; . . . ; s:

ð23Þ
The coefficients aij, bi and ci are prescribed for the desired accuracy and stability properties. The stage deriv-
ative vectors ki are defined implicitly, and require solving a (set of) nonlinear system(s) by simplified Newton-
type methods.

For a general implicit method most of the coefficients aij 6¼ 0 and one large nonlinear system (23) of dimen-
sion ns (dimension of the system times the number of stages) needs to be solved to simultaneously find all the
stage derivative vectors k1; . . . ; ks. We will call such methods fully implicit Runge–Kutta methods (FIRK).

Single diagonally implicit Runge–Kutta methods (SDIRK) are characterized by a special structure of the
coefficients (aij ¼ 0 whenever i > j and aii ¼ c for all i ¼ 1; . . . ; s). In this case the stage derivative vectors
k1; . . . ; ks are solved for successively, each requiring the solution of a nonlinear system of dimension n. More-
over the same LU factorization can be reused for all systems during the simplified Newton iterations.

Following [39, Section 4.8], for implementation purposes (23) is written in the equivalent form
ykþ1 ¼ yk þ
Xs

i¼1

diZi; T i ¼ tk þ cih;

Zi ¼ Y i � yk ¼ h
Xs

j¼1

aijf ðT j; yk þ ZjÞ:
ð24Þ
Replacing the nonlinear system in ki by a nonlinear system in Zi has numerical advantages for stiff systems
where f has a large Lipschitz constant. The coefficients di are defined based on A and b [39, Section IV.8]
(d ¼ A�T b if A is invertible; the formula can also be adapted to the case of non-invertible A).

With the compact notation
Z ¼
Z1

..

.

Zs

2
664

3
775; F ðZÞ ¼

f ðT 1; yk þ Z1Þ
..
.

f ðT s; yk þ ZsÞ

2
664

3
775
and with the Kronecker product denoted �, the n	 n identity matrix denoted In, the method (24) can be writ-
ten as
Z ¼ ðhA� InÞ � F ðZÞ: ð25Þ

The nonlinear system (25) in Z can be solved by Newton iterations of the form
Ins � hJ ðZ ½m�Þ
� 	

DZ ½m� ¼ Z ½m� � ðhA� InÞ � F ½m�

Z ½mþ1� ¼ Z ½m� � DZ ½m�; m ¼ 0; 1; . . .
ð26Þ
where F ½m� ¼ F ðZ ½m�Þ, Ins is the ns	 ns identity matrix, and the Jacobian matrix is
J ¼

a11JðT 1; yk þ Z1Þ a12JðT 2; yk þ Z2Þ � � � a1sJðT s; yk þ ZsÞ
a21JðT 1; yk þ Z1Þ a22JðT 2; yk þ Z2Þ � � � a2sJðT s; yk þ ZsÞ

..

. . .
. ..

.

as1JðT 1; yk þ Z1Þ as2JðT 2; yk þ Z2Þ � � � assJðT s; yk þ ZsÞ

2
66664

3
77775: ð27Þ
The cost of the Newton iterations (26) is dominated by the LU decompositions of the ns	 ns matrices I � hJ .



A. Sandu, L. Zhang / Journal of Computational Physics 227 (2008) 5949–5983 5957
3.3.1. Implementation aspects of FIRK methods

A more efficient approach is provided by simplified Newton iterations where all the ODE Jacobians in (27)
are evaluated at the beginning of the current step (JðT i; yk þ ZiÞ � Jðtk; ykÞ for all i). This results in the follow-
ing approximation of (27)
J � A� Jðtk; ykÞ: ð28Þ

Replacing the matrix (27) by (28) leads to simplified Newton iterations of the form
½Ins � hA� Jðtk; ykÞ� � DZ ½m� ¼ Z ½m� � ðhA� InÞF ½m�

Z ½mþ1� ¼ Z ½m� � DZ ½m�; m ¼ 0; 1; . . .
ð29Þ
The computational workload spent in the LU factorization of the ns	 ns matrix I � hA� Jðtk; ykÞ is Oðn3s3Þ if
full linear algebra is used.

This linear algebra computational work can be reduced to Oðn3sÞ by diagonalizing the inverse of the Run-
ge–Kutta matrix [39, Section IV.8]
T�1A�1T ¼ K ¼ diagfc; ak 
 bkig ð30Þ

For typical FIRK methods with an odd number of stages the inverse Runge–Kutta matrix A�1 has one real
eigenvalue c and ðs� 1Þ=2 pairs of complex conjugate eigenvalues ak 
 bk i, while for an even number of
stages there typically are s=2 complex conjugate pairs.

By changing the variables in the simplified Newton iterations (28)
Z ½m� ¼ ðT � InÞW ½m�; W ½m� ¼ ðT�1 � InÞZ ½m�
and after premultiplying (29) by h�1T�1A�1 � In one obtains the simplified Newton iterations in the W

variables
½h�1K� In � I s � Jðtk; ykÞ� � DW ½m� ¼ ðh�1K� InÞW ½m� � ðT�1 � InÞF ½m�;
W ½mþ 1� ¼ W ½m� � DW ½m�; m ¼ 0; 1; . . .

ð31Þ
The required linear algebra reduces to one real LU decomposition of the n	 n matrix h�1cIn � Jðtk; ykÞ (cost
� n3) and one (or several) complex LU decompositions of the n	 n matrices h�1ðak þ ibkÞIn � Jðtk; ykÞ (cost
for each system � 4n3). Corresponding forward–backward substitutions are performed at each iteration.

3.3.2. Implementation aspects of SDIRK methods

For SDIRK methods the matrix (27) has a block lower triangular form.
The system (25) can be written in the equivalent form
ðhðA� cIsÞ � InÞ � F ðZÞ ¼ ðhðA� cIsÞ � InÞðh�1A�1 � InÞ � Z ¼ ððA� cIsÞA�1 � InÞ � Z ¼ ðH� InÞ � Z;

with
H ¼ ðA� cIsÞA�1;
which implies that sums of derivative values can be expressed as sums of Z variables
h
Xi�1

j¼1

aijf ðT j; yk þ ZjÞ ¼
Xi�1

j¼1

hijZj:
Simplified Newton iterations are used to evaluate Zi successively for each stage i ¼ 1; . . . ; s:
Gi ¼ h�1c�1
Xi�1

j¼1

hijZj;

½h�1c�1In � Jðtk; ykÞ�DZ ½m�i ¼ h�1c�1Z ½m�i � f ðT i; yk þ Z ½m�i Þ � Gi;

Z ½mþ1�
i ¼ Z ½m�i � DZ ½m�i ; m ¼ 0; 1; . . .

ð32Þ
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3.3.3. The tangent linear model of Runge–Kutta methods

The tangent linear model of a the Runge method in the formulation (24) is obtained by taking the variation
of (24) with respect to changes in initial conditions
ykþ1 ¼ yk þ
Xs

i¼1

diZi; dykþ1 ¼ dyk þ
Xs

i¼1

didZi;

Zi ¼ h
Xs

j¼1

aijf ðT j; yk þ ZjÞ;

dZi ¼ h
Xs

j¼1

aijJðT j; yk þ ZjÞ � ðdyk þ dZjÞ:

ð33Þ
The resulting formula (33) is the same as the one obtained by applying (24) to solve the forward model (6)
together with the tangent linear model (11).

Using the compact notation (27) of the previous section and
dZ ¼
dZ1

..

.

dZs

2
664

3
775; 1s ¼

1

..

.

1

2
64
3
75 2 Rs;

dyk

..

.

dyk

2
664

3
775 ¼ 1s � dyk;
Eq. (33) for the tangent linear variables dZ is:
½Ins � hJ �dZ ¼ hJ ð1s � dykÞ: ð34Þ

This can also be obtained by taking the variation of Eq. (25).

3.3.4. Implementation aspects of the tangent linear FIRK methods

The ns	 ns system of linear Eqs. (34) can be solved directly for the tangent linear variables dZ. This is
advantageous for very sparse systems. For non-sparse Jacobians one can avoid the ns	 ns LU factorization
of (34) by using the approximation (28) and solving the system (34) with the iterative scheme:
½Ins � hA� Jðtk; ykÞ� � DdZ ½m� ¼ ðI � hJ ÞdZ ½m� � hJ ð1s � dykÞ;
dZ ½mþ1�

i ¼ dZ ½m�i � DdZ ½m�i ; m ¼ 0; 1; . . .
Unlike the direct solution of (34) the iterative approach solves the tangent linear variables within a prescribed
accuracy which is controlled by our implementation via the number of iterations. In case of iteration non-con-
vergence the solution is computed by the direct method. The LU decomposition of the system matrix
Ins � hA� Jðtk; ykÞ (or, more exactly, several equivalent n	 n real and complex LU factorizations) is (are)
available from the direct solution (31). Thus the calculation of the tangent linear variables piggybacks the cal-
culation of the forward variables. Each step of the forward solution is followed by the corresponding step of
the tangent linear model, which reuses the same LU decomposition(s). The additional cost of computing the
tangent linear variables in this direct-decoupled Runge–Kutta approach is moderate. The accuracy of the tan-
gent linear solution can be monitored via the embedded Runge–Kutta scheme, and the step size control can be
based on both the forward and the tangent linear error estimates.

3.3.5. Implementation aspects of the tangent linear SDIRK methods
For SDIRK methods the linear system (34) is block upper triangular, and the stage tangent linear variables

dZi can be solved for successively for stages i ¼ 1; . . . ; s
½I � hcJðT i; yk þ ZiÞ� � dZi ¼
Xi�1

j¼1

hijdZj þ hcJðT i; yk þ ZiÞ � dyk: ð35Þ
For each stage a n	 n system of linear equations needs to be solved. Each system has a different matrix (since
the Jacobians in (35) are evaluated at different arguments) and therefore one needs to perform s different LU
decompositions.
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An iterative solution of (35) is possible based on the approximation (28)
Gi ¼ h�1c�1
Xi�1

j¼1

hijdZj þ JðT i; yk þ ZiÞ � dyk;

½h�1c�1In � Jðtk; ykÞ� � DdZ ½m�i ¼ h�1c�1dZ ½m�i � JðT i; yk þ ZiÞ � dZ ½m�i � Gi;

dZ ½mþ1�
i ¼ dZ ½m�i � DdZ ½m�i ; m ¼ 0; 1; . . .

ð36Þ
The iterative solution (36) uses the same n	 n LU factorization of h�1c�1In � Jðtk; ykÞ for all stages. Moreover,
this LU decomposition is already available from the forward solution (32). Thus the tangent linear solution
can be obtained at only a moderate additional cost. The accuracy with which the iterations (36) solve the sys-
tem (35) is controlled in our implementation. In the case of non-convergence a direct solution is employed.

3.3.6. The discrete first and second order Runge–Kutta adjoints

Following Hager [36] the first order discrete adjoint of the Runge–Kutta method (23) is
ui ¼ hJ TðT i; Y iÞ � bik
kþ1 þ

Xs

j¼1

aj;iuj

 !
; i ¼ s; . . . ; 1;

kk ¼ kkþ1 þ
Xs

j¼1

uj:

ð37Þ
The discrete second order adjoint of the Runge–Kutta method (23) is obtained by taking the variation of (37)
with respect to changes in initial conditions:
wi ¼ hJ TðT i; Y iÞ � bir
kþ1 þ

Xs

j¼1

aj;iwj

 !
þ hðHðT i; Y iÞ � dY iÞT � bik

kþ1 þ
Xs

j¼1

aj;iuj

 !
; i ¼ s; . . . ; 1;

rk ¼ rkþ1 þ
Xs

j¼1

wj:

ð38Þ
Recall that the forward stage variables are Y i ¼ yn þ Zi.

3.3.7. Implementation aspects of first order adjoints of FIRK methods

Using the matrix (27) and the notation
U ¼
u1

..

.

us

2
664

3
775; G ¼ h

b1J TðT 1; Y 1Þkkþ1

..

.

bsJ TðT s; Y sÞkkþ1

2
664

3
775:
Eq. (37) for the adjoint stage vectors U can be written compactly as
½Ins � hJ �T � U ¼ G: ð39Þ

Not surprisingly this ns	 ns linear system is the transpose of the tangent linear model system (34). The system
(39) can be solved directly for very sparse systems. For non-sparse systems the cost of the ns	 ns LU factor-
ization can be avoided using again the approximation (28) and solving the linear system (39) by iterations of
the form
½Ins � hA� Jðtk; ykÞ�TDU ½m� ¼ ½Ins � hJ �T � U ½m� � G;

U ½mþ1� ¼ U ½m� � DU ½m�:
The LU factorization of Ins � hA� Jðtk; ykÞ can be solved effectively in Oðn3sÞ operations using the transfor-
mation (30) of the Runge–Kutta matrix. Note that the real and complex LU factorizations are the same as the
ones used in the forward and in the tangent linear model calculations.
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3.3.8. Implementation aspects of first order adjoints of SDIRK methods

For SDIRK methods each stage requires to solve a different n	 n linear system. Sequentially for each stage
(in reverse order) we have
½In � hcJðT i; Y iÞ�ui ¼ hJ TðT i; Y iÞ � bik
kþ1 þ

Xs

j¼iþ1

aj;iuj

 !
; i ¼ s; . . . ; 1:
To avoid s different LU decompositions one can employ an iterative approach that reuses the same LU
decomposition for all stages
Gi ¼ c�1J TðT i; Y iÞ � bik
kþ1 þ

Xs

j¼iþ1

aj;iuj

 !
;

½h�1c�1In � Jðtk; ykÞ�Du½m�i ¼ h�1c�1u½m�i � J TðT i; Y iÞ � u½m�i � Gi;

u½mþ1�
i ¼ u½m�i � Du½m�i ; m ¼ 0; 1; . . .
Our implementation controls the accuracy of the solution via the number of iterations; if non-convergence is
detected a direct solution is employed.

3.3.9. Implementation aspects of second order adjoints of FIRK methods

Using the matrix (27) and the notation
G ¼ h

b1J TðT 1; Y 1Þrkþ1

..

.

bsJ TðT s; Y sÞrkþ1

2
6664

3
7775þ h

ðHðT 1; Y 1Þ � dY 1ÞT � b1k
kþ1 þ

Ps

j¼1

aj;1uj

 !

..

.

ðHðT s; Y sÞ � dY sÞT � bsk
kþ1 þ

Ps

j¼1

aj;suj

 !

2
6666666664

3
7777777775
;

the second order adjoint Eq. (38) can be written compactly as
½Ins � hJ �T � W ¼ G: ð40Þ
This ns	 ns linear system has the same matrix as the first order adjoint (39). For very sparse systems one can
solve directly for the first order adjoint (39) and for the second order adjoint stage vectors (40) reusing the
same ns	 ns LU decomposition.

Like with the first order adjoint, one can avoid the ns	 ns LU decomposition and solve the Eq. (38) by
iterations of the form
½I � hA� Jðtk; ykÞ�TDW ½m� ¼

w½m�1 � hJ TðT 1; Y 1Þ �
Ps
j¼1

aj;1w½m�j

 !

..

.

w½m�s � hJ TðT s; Y sÞ �
Ps

j¼1

aj;sw
½m�
j

 !

2
6666666664

3
7777777775
� G;

W ½mþ1� ¼ W ½m� � DW ½m�; m ¼ 0; 1; . . .
Our implementation controls the accuracy of the second order adjoint solution via the number of iterations; if
non-convergence is detected a direct solution is employed.
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3.3.10. Implementation aspects of second order adjoint of SDIRK methods

Eq. (38) is solved stage by stage ði ¼ s; s� 1; . . . ; 1Þ
Gi ¼ c�1J TðT i; Y iÞ bir
kþ1 þ

Xs

j¼iþ1

aj;iwj

 !
þ c�1ðHðT i; Y iÞ � dY iÞT

� bik
kþ1 þ

Xs

j¼iþ1

aj;iuj þ cui

 !
½h�1c�1In � J TðT i; Y iÞ�wi ¼ Gi: ð41Þ
The direct solution of (41) requires a different n	 n LU factorization for each stage. To avoid this the systems
(41) can be solved by an iterative approach which uses the same LU factorization for all stages:
½h�1c�1In � J Tðtk; ykÞ�Dw½m�i ¼ h�1c�1w½m�i � J TðT i; Y iÞw½m�i � Gi; ð42Þ
w½mþ1�

i ¼ w½m�i � Dw½m�i ; m ¼ 0; 1; . . .
3.4. Rosenbrock methods

An s-stage Rosenbrock method [39, Section 4.7] computes the next-step solution by the formulas
ykþ1 ¼ yk þ
Xs

i¼1

miki; T i ¼ tk þ aih; Y i ¼ yk þ
Xi�1

j¼1

aijkj; ð43Þ

½h�1c�1In � Jðtk; ykÞ�ki ¼ f ðT i; Y iÞ þ
Xi�1

j¼1

cij

h
kj þ hciftðtk; ykÞ:
where s is the number of stages. The formula coefficients aij, cij, mi, c and ci give the order of consistency and
the stability properties. The ODE Jacobian J as well as the partial derivative of the ODE function with respect
to time ft are explicitly used in the formula. Only one LU factorization per step is used. Moreover, no itera-
tions are needed in the solution process. Rosenbrock methods are well suited for mildly stiff problems and
moderate accuracy [39]. They are designed to have excellent stability properties, preserve linear invariants
(a.k.a. mass) and are computationally efficient. In [64] we have shown that Rosenbrock methods work well
for solving atmospheric chemistry problems.

3.4.1. The tangent linear model of Rosenbrock methods

To obtain the Rosenbrock tangent linear model one takes the variation of the method (43) with respect to
changes in the initial conditions
ykþ1 ¼ yk þ
Xs

i¼1

miki; dykþ1 ¼ dyk þ
Xs

i¼1

mi‘i;

T i ¼ tk þ aih; Y i ¼ yk þ
Xi�1

j¼1

aijkj; dY i ¼ dyk þ
Xi�1

j¼1

aij‘j;

½h�1c�1In � Jðtk; ykÞ� � ki ¼ f ðT i; Y iÞ þ
Xi�1

j¼1

cij

h
kj þ hciftðtk; ykÞ;

½h�1c�1In � Jðtk; ykÞ� � ‘i ¼ JðT i; Y iÞ � dY i þ
Xi�1

j¼1

cij

h
‘j þ ðHðtk; ykÞ � kiÞ � dyk þ hciJ tðtk; ykÞ � dyk:

ð44Þ
Note that the tangent linear stages ‘i require explicitly the ODE Hessian H (due to the explicit presence of the
ODE Jacobian in the forward Rosenbrock formula). The method requires a single n	 n LU decomposition
per step to obtain both the concentrations ykþ1 and the sensitivities dykþ1. The additional cost required for
the tangent linear calculations is alleviated by the reuse of the same LU decomposition. However the
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calculation of the Hessian and the corresponding tensor–vector products in the tangent linear calculations can
be relatively expensive.

3.4.2. The discrete first and second order adjoints of rosenbrock methods
The discrete first order adjoint of the (non-autonomous) Rosenbrock method (43) is [65]
½h�1c�1In � J Tðtk; ykÞ� � ui ¼ mik
kþ1 þ

Xs

j¼iþ1

aj;ivj þ
cj;i

h
uj


 �
;

vi ¼ J TðT i; Y iÞ � ui; i ¼ s; . . . ; 1;

kk ¼ kkþ1 þ
Xs

i¼1

ðHðtk; ykÞ � kiÞT � ui þ hJ T
t ðtk; ykÞ �

Xs

i¼1

ciui þ
Xs

i¼1

vi:

ð45Þ
The formula (45) makes explicit use of the partial derivative of the Jacobian with respect to time J t and of the
ODE Hessian H (both computed once at the beginning of the time step). The same LU factorization is used by
all stages; this is the LU factorization used in both the forward and the tangent linear methods.

The discrete second order adjoint of a Rosenbrock method is obtained by taking the variation of (45) with
respect to changes in the initial condition
½h�1c�1In � J Tðtk; ykÞ� � wi ¼ mir
kþ1 þ ðHðtk; ykÞ � dykÞT � ui þ

Xs

j¼iþ1

aj;izj þ
cj;i

h
wj


 �
; i ¼ s; . . . ; 1; ð46Þ

zi ¼ J TðT i; Y iÞ � wi þ ðHðT i; Y iÞ � dY iÞT � ui;

rk ¼ rkþ1 þ
Xs

i¼1

ðHðtk; ykÞ � kiÞT � wi þ
Xs

i¼1

ðHðtk; ykÞ � ‘iÞT � ui þ
o

oyk

Xs

i¼1

ðHðtk; ykÞ � kiÞT � ui

 !
� dyk

þ hJ T
t ðtk; ykÞ �

Xs

i¼1

ciwi þ hðHtðtk; ykÞ � dykÞT �
Xs

i¼1

ciui þ
Xs

i¼1

zi:
The formula (46) requires explicitly the partial derivative of the ODE Hessian with respect to time Ht. It also
requires the derivative of the Hessian-vector products with respect to the solution ðo=oyfðHðt; yÞ � kÞT � ugÞ.
This term involves third order derivatives of the ODE right hand side function
o3fiðt; yÞ
oyjoykoy‘

:

The calculation of these high order derivatives is challenging, making the second order discrete adjoint Rosen-
brock formula (46) less attractive in practice. Nevertheless the approach is useful for typical chemical mech-
anisms which involve only monomolecular and bimolecular reactions. For these mechanisms the underlying
ODE function f ðt; yÞ is quadratic in y, and the third order derivatives of f vanish.

3.5. KPP

The implementation of numerical integrators for chemistry can be done automatically using the Kinetic
PreProcessor KPP software tools [23]. KPP was extended [20,65] to produce a rapid and efficient implemen-
tation of the code for sensitivity analysis of chemical kinetic systems. KPP builds Fortran77, Fortran90, C, or
Matlab simulation code for chemical systems with chemical concentrations changing in time according to the
law of mass action kinetics. KPP generates the following building blocks:

(1) Fun: the ODE function f ðt; yÞ;
(2) Jac, Jac_SP: the ODE Jacobian Jðt; yÞ in full or in sparse format;
(3) KppDecomp: sparse LU decomposition for the Jacobian;
(4) KppSolve, KppSolveTR: solve sparse system with the Jacobian matrix and its transpose;
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(5) Jac_SP_Vec ðw J � uÞ, JacTR_SP_Vec ðw J T � uÞ: sparse matrix-vector multiplication of the Jaco-
bian (transposed or not) with user vector;

(6) Hess: the ODE Hessian Hðt; yÞ represented in sparse 3-tensor format;
(7) Hess_Vec ðw ðH � uÞ � vÞ, HessTR_Vec ðw ðH � uÞT � vÞ: sparse tensor product of the Hessian (or its

transpose) with user vectors; same as the derivative of Jacobian (transposed) vector product times
vector.

In [20,65] we show how these KPP building blocks can be used to implement very efficiently code for direct
and adjoint sensitivity analysis of chemical systems. A related approach was taken in the early application of
the 4D-Var to chemical data assimilation by Fisher and Lary [31].

4. Discrete SOA for the transport system

In the STEM model [11] the transport equation is solved using a directional x, y and z split approach. The
basic numerical techniques solve the one-dimensional transport equation
oc
ot
¼ �u

oc
ox
þ 1

q
o

ox
qK

oc
ox

� �
; cðt; xinÞ ¼ cinðtÞ; K

oc
ox

����
xout

¼ 0: ð47Þ
In STEM the horizontal advection term is discretized by the third order upwind finite difference formula [42]
� u
oc
ox

� �����
x¼xi

¼
uið�ci�2 þ 6ci�1 � 3ci � 2ciþ1Þ=ð6DxÞ; if ui P 0;

uið2ci�1 þ 3ci � 6ciþ1 þ ciþ2Þ=ð6DxÞ; if ui < 0:


ð48Þ
The diffusion terms are discretized by the second order central differences
1

q
o

ox
qK

oc
ox

� �����
x¼xi

¼ ðqiþ1Kiþ1 þ qiKiÞðciþ1 � ciÞ � ðqiKi þ qi�1Ki�1Þðci � ci�1Þ
2qiDx2

: ð49Þ
For the inflow boundary the advection discretization drops to the first order upwind scheme, which makes the
order of consistency of the whole scheme quadratic for the interior points of the domain. For the outflow
boundary the advection discretization also drops to the first order upwind scheme.

The space semi-discretization leads to the linear ordinary differential equation
dc
dt
¼ AðtÞcðtÞ þ BðtÞ; ð50Þ
where the matrix AðtÞ depends on the wind field, the diffusion tensor and the air density but it does not depend
on the unknown concentrations (for the discretization schemes under consideration). The vector BðtÞ repre-
sents the Dirichlet boundary conditions.

The forward system is advanced in time from tk to tkþ1 ¼ tk þ Dt using Crank–Nicholson
ckþ1 ¼ I � Dt
2

Aðtkþ1Þ
� ��1

I þ Dt
2

AðtkÞ
� �

ck þ Dt
BðtkÞ þ Bðtkþ1Þ

2

� �
: ð51Þ
The chosen discretization leads to pentadiagonal matrices and systems which can be solved very efficiently.
Eq. (51) represents the forward discrete model for horizontal transport. The corresponding adjoint system

is then advanced backwards in time using the discrete adjoint formulation
kk ¼ I þ Dt
2

ATðtkÞ
� �

I � Dt
2

ATðtkþ1Þ
� ��1

kkþ1: ð52Þ
Eq. (52) is a consistent time discretization of the continuous adjoint equation. Because of the linear discreti-
zation the second order adjoint formula obtained by taking the variation of (52) has the same form as (52)
rk ¼ I þ Dt
2

ATðtkÞ
� �

I � Dt
2

ATðtkþ1Þ
� ��1

rkþ1: ð53Þ
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This means that the same adjoint transport routines are used for both the first order adjoint (52) and for the
second order adjoint solutions (53). Moreover, it is possible to reuse the same LU decomposition of
I � ðDt=2ÞAðtkþ1Þ for both the first and the second order adjoint calculations.

The vertical advection term is discretized by the first order upwind finite difference formula, while the ver-
tical diffusion is discretized by the second order central differences on a non-uniform vertical grid. The top
boundary condition is Dirichlet for inflow and Neumann for outflow, while the Neumann ground boundary
condition accounts for emission and deposition fluxes. Similar considerations hold for the discrete adjoints of
the vertical transport. The same discrete adjoint vertical transport routine are used for both the first and the
second order adjoint solutions.

Other transport discretization schemes are possible, notably monotonic finite volume schemes for advection
that use flux or slope limiting to avoid the creation of spurious oscillations. The analysis of the corresponding
discrete adjoint schemes performed in [52] reveals possible pitfalls. A discussion of discrete second order
adjoints for monotonic advection schemes is outside the scope of this paper.

5. Applications of second order adjoints

5.1. Sensitivity analysis

We first consider the SAPRC-99 atmospheric chemistry mechanism [12,13] which considers the gas-phase
atmospheric reactions of volatile organic compounds (VOCs) and nitrogen oxides ðNOX Þ in urban and regio-
nal settings. The chemical mechanism was developed at University of California, Riverside by Dr. W.P.L. Car-
ter for use in airshed models for predicting the effects of VOC and NOX emissions on tropospheric secondary
pollutants formation such as ozone ðO3Þ, peroxyacetyl nitrate (PAN), etc. In our analysis we consider the con-
densed fixed-parameter version of the SAPRC-99 mechanism which takes into consideration 235 reactions
among 81 variable chemical species (in addition O2, H2, CH4 and H2O concentrations are considered fixed),
and is currently incorporated into the three-dimensional regional-scale model STEM-II [10].

The 24 h simulation interval starts at t0 ¼ 12pm and ends at tF ¼ 12pm the next day. We consider two
numerical methods. The first one is SDIRK-4 [39], a five-stage fourth order L-stable and stiffly accurate
SDIRK method, with an embedded method of order three for error control. The second method is RODAS
[39], a six stage fourth order stiffly accurate Rosenbrock method with error control. Both methods, their tan-
gent linear models, and their first and second order discrete adjoints have been implemented in the KPP
library, and use the specially prepared sparse Jacobians and Hessians. All simulations are carried out with
the relative error tolerance Rtol = 10�5 and the absolute error tolerance Atol = 10�3 mol/cm3.

We compute adjoint sensitivities of two different cost functions. The first one is the PAN concentration at
the final time, the second is half the O3 concentration squared at the final time
W1 ¼ PANðtFÞ and W2 ¼ 1

2
O2

3ðtFÞ:
The initial NOX concentrations are perturbed from their reference values as follows
NOðt0Þ  ð1þ eÞ �NOreferenceðt0Þ; NO2ðt0Þ  ð1þ eÞ �NOreference
2 ðt0Þ: ð54Þ
For each cost function and each perturbation we compute the first order adjoints k1;2ðeÞ. For the reference
solution we also compute the first and second order adjoints (k1;2ð0Þ and r1;2 respectively). Using the relation
r1;2 � k1;2ðeÞ � k1;2ð0Þ we validate our implementation by checking the second order adjoint against the finite
difference of first order adjoints. Specifically we compute the RMS norm of the relative error for all n

components
ERR1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

k1;2
i ðeÞ � k1;2

i ð0Þ � r1;2
i

max r1;2
i

�� ��; tol
� �

 !2
vuut : ð55Þ
These relative errors are reported in Table 1. We see that for both cost functions and for both methods the
agreement between the second order adjoint and the finite difference of first order adjoints is improved with



Table 1
Validation of the second order adjoints against finite differences of first order adjoints

e W1 ¼ PANðtFÞ W2 ¼ 0:5O2
3ðtFÞ

SDIRK-4 RODAS SDIRK-4 RODAS

0.1 1.15E�01 4.22E�07 1.22E�01 1.30E�01
0.01 2.99E�03 3.21E�09 7.90E�03 1.36E�02

The RMS norm of the relative difference decreases for smaller perturbations.
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decreasing the perturbation magnitude. The agreement for the RODAS method results on the first cost func-
tion is excellent (we have no explanation for this).

The computational costs associated with the first and second order adjoints are reported in Table 2. For the
SDIRK method the cost of the first order adjoint (including the forward model) is about twice the cost of the
forward integration, while the cost of the second order adjoint is about three times the cost of a forward inte-
gration. For the Rosenbrock method the cost of the first order adjoint is more than twice the forward cost (due
to the added overhead of computing Hessians). For the SAPRC-99 chemical mechanism the Hessian is con-
stant, and the third order derivative terms that appear in the discrete second order Rosenbrock adjoint vanish.
The cost of Rosenbrock second order adjoint is about four times that of a forward integration. The sparse
linear algebra implemented by KPP is extremely efficient. Due to this efficiency only modest cost savings result
from reusing the (inexpensive) sparse LU decompositions in tangent linear and in adjoint calculations.

Next we show how second order adjoints can be used in sensitivity analysis, and can extend the range of
validity of sensitivity analysis for highly nonlinear chemical systems. The results are shown in Fig. 1. The
changes of PAN concentrations at the end of the 24 hours interval are nonlinear with respect to the initial
concentrations of NO and NO2. We let the initial NO and NO2 initial concentrations vary according to
Table 2
CPU times for the 24 h simulation of the SAPRC-99 box model

Simulation SDIRK-4 RODAS

CPU time (s) Scaled time CPU time (s) Scaled time

FWD only 0.71 1 0.30 1
FWD + TLM 1.24 1.75 0.57 1.9
FWD followed by FOA 1.39 1.96 0.67 2.23
FWD + TLM followed by FOA + SOA 2.11 2.97 1.23 4.01

FWD denotes the forward model, TLM the tangent linear model, FOA the first order adjoint and SOA the second order adjoint.
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Fig. 1. Sensitivity of final PAN concentration with respect to the initial concentrations of NO and NO2. The changes in PAN
concentration for different changes in the initial conditions Dc0 are shown against the first order approximation (kT � Dc0, marked with ‘‘x”)
and against the second order approximation (kT � Dc0 þ 1=2 � rT � Dc0, marked with ‘‘o”). The first order sensitivity analysis is inaccurate
for this highly nonlinear system, while the second order sensitivity analysis accurately predicts the changes in PAN.
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(54) within ±40% from their reference values ðe 2 ½�0:4;þ0:4�Þ. The change in the final PAN concentration is
predicted by first and second order Taylor series about the reference initial concentrations. The first and the
second terms in the Taylor series are obtained using the first and the second order adjoints respectively:
Fig. 2.
ozones
four se
W1ðc0Þ ¼ PANðtFÞjcðt0Þ¼c0 ;

W1ðc0 þ Dc0Þ ¼ PANðtFÞjcðt0Þ¼c0þDc0 ;

DPAN ¼ W1ðc0 þ Dc0Þ �W1ðc0Þ

¼ ðrc0W1ðc0ÞÞT � Dc0 þ 1

2
ðDc0ÞT � ðr2

c0;c0W1ðc0ÞÞ � Dc0 þ � � �

¼ kT � Dc0 þ 1

2
rT � Dc0 þ � � �
We see in Fig. 1 that the first order approximation is poor for large perturbations, while the second order
approximation continues to work well for large deviations from reference.

5.2. The chemical transport model and the test case

The previous sensitivity analysis application is performed in a box model. We now consider full three-
dimensional chemistry and transport simulations. The numerical experiments use the state-of-the-art regional
atmospheric photochemistry and transport model STEM [11].

The test case is a real-life simulation of air pollution in North–Eastern United States in July 2004 as shown
in Fig. 2 (the dash-dotted line delimits the computational domain). The computational domain covers
1500	 1320	 20 km with a horizontal resolution of 60	 60 km and a variable vertical resolution (resulting
in a three-dimensional computational grid of 25	 22	 21 points). Real data is used for the initial concentra-
tions, meteorological fields, boundary values and emission rates starting at 0 GMT of July 20th, 2004. This
data corresponds to the ICARTT (International Consortium for Atmospheric Research on Transport and
Transformation)[33] campaign in July 2004. A detailed description of the ICARTT fields and data can be
found in [72].

Data assimilation is the process of integrating observational data and model predictions to obtain an opti-
mal representation of the state of the atmosphere. As more chemical observations in the troposphere are
becoming available, chemical data assimilation is expected to play an essential role in air quality forecasting,
similar to the role it has in numerical weather prediction. Variational techniques for data assimilation are well-
established [45,53,71], and the 4D-Var framework is the current state-of-the-art in meteorological [18,62] and
chemical [14,28,29,50,65,66,68] data assimilation.

The observations used in this paper for data assimilation are real ozone ðO3Þ measurements taken during
the ICARTT [33] campaign in summer 2004 [72]. Ground level ozone measurements are provided hourly by
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(a) The location of the ground measuring stations in support of the ICARTT campaign (340 in total) (b) The location of the two
ondes (S1, S2) and the path of the P3-B flight that provide observations used in data assimilation. Also shown are the locations of
lected stations (A–D) that will be used to illustrate the assimilation results. (a) ICARTT ground stations (b) selected stations.
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the EPA’s AirNow network of ground stations (340 in total) whose locations are shown in Fig. 2(a). High
altitude ozone measurements are taken by two ozonesondes and a P3-B flight, all shown in Fig. 2(b). More
ozone observations are available from two Mozaic flights [11]. The setting for data assimilation is described
in detail in [15]. We denote by zk the observations available at discrete times tk, k ¼ 1; . . . ;N . The last obser-
vation is taken at the final time, tN ¼ tF. The observations are functions of the state at the corresponding time;
a linear mapping operator D interpolates the model states (available on the grid) to observations
zk ¼ D � yk þ ek; heki ¼ 0; hek � ek
� �Ti ¼ Rk;
where the observational and representativeness errors ek are assumed to be normally distributed and uncor-
related random variables with zero mean and covariances Rk, ek 2 N ð0;RkÞ.

We consider the situation where the initial state y0 is uncertain, and is represented as a normally distributed
random variable with mean yB (‘‘background state”) and covariance B. The form of this covariance is given by
the autoregressive model proposed in [17].

In four-dimensional variational (4D-Var) approach to data assimilation one uses the information from
both the background state and the observations to determine the most likely initial state ya as the minimizer
of the following cost functional
Wðy0Þ ¼ 1

2
ðy0 � yBÞTB�1ðy0 � yBÞ þ 1

2

XN

k¼1

ðDyk � zkÞTR�1
k ðDyk � zkÞ: ð56Þ
The first term represents a penalty for the departure from the background value yB. The next terms measure
the mismatch between model predictions and observations. In the case where the model is linear, the back-
ground uncertainty is Gaussian y0 2 N ðyB;BÞ and the observation uncertainties are Gaussian, the aposteriori
probability density of the initial state is also Gaussian. In this situation the cost function (56) represents the
negative logarithm of the aposteriori Gaussian probability density function, and the minimizer ya of (56) rep-
resents the maximum likelihood estimator of the state. In the following numerical experiments only the initial
O3 concentration is considered uncertain. All first and second order adjoint derivatives of (56) are computed
with respect to the initial ozone concentration field, unless specified otherwise.

The efficient numerical minimization of (56) requires the gradient of the cost function ðk0 ¼ ðoW=oy0ÞTÞ as
well as second order derivative information in the form of Hessian vector products ðr0 ¼ o2W=ðoy0Þ2 � uÞ.
These derivatives are obtained via the first and second order adjoint models as follows. Consider the CTM
represented compactly as (2). First the forward and the tangent linear models are solved together forward
in time:
y0 ¼ yðt0Þ;
dy0 ¼ u;

Save y0; dy0 on tape

FOR k ¼ 1; 2; . . . ;N � 1;N DO

yk ¼ N kðyk�1Þ;
dyk ¼ N

0
kðyk�1Þ � dyk�1;

Save yk; dyk on tape

END FOR

ð57Þ
Next the first and second order adjoint models defined for the cost function (56) are solved together, backward
in time:
rN ¼ 0;

kN ¼ 0;

Read yN ; dyN from tape

FOR k ¼ N ;N � 1; . . . ; 2; 1 DO
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kk ¼ kk þ DTR�1
k � ðDyk � zkÞ

rk ¼ rk þ DTR�1
k D � dyk

Read yk�1; dyk�1 from tape

kk�1 ¼ �ðN 0
kðyk�1ÞÞT � kk;

rk�1 ¼ �ðN 0
kðyk�1ÞÞT � rk � ðN 00

kðyk�1Þ � dyk�1ÞT � kk

END FOR

k0 ¼ k0 þ B�1 � ðy0 � yBÞ;
r0 ¼ r0 þ B�1 � dy0: ð58Þ
5.3. Validation of the 3D second order adjoints

We have implemented second order adjoint capabilities in the three-dimensional STEM model according to
(57) and (58). The chemistry is solved using Rosenbrock methods implemented efficiently via KPP, as dis-
cussed in Section 3. The second order adjoints for transport are implemented as discussed in Section 4.
The CPU times associated with the first and second order adjoint calculation are reported in Table 3. We
see that the CPU time needed for a second order adjoint calculation is less than twice the time for a first order
adjoint calculation.

5.3.1. Validation of second order adjoints against finite differences

We now validate the correctness of the three-dimensional second order adjoints against finite differences of
first order adjoints. The cost function for this experiment is (56). Additional experiments (not shown here)
using cost functions defined as the sum of concentrations of ground level PAN over the coastal area at final
time lead to similar conclusions.

We run two 12-h simulations, one with the reference initial conditions and the other with perturbed initial
NO2 concentrations. The second order adjoint r for the reference run is shown in Fig. 3(a) (ground level
3
imes for a 12 h three-dimensional chemistry and transport simulation

tion CPU time (min) Scaled time

only 35.8 1
followed by FOA 83.92 2.34
+ TLM followed by FOA + SOA 127.6 3.56

denotes the forward model, TLM the tangent linear model, FOA the first order adjoint and SOA the second order adjoint. Shown
wall clock times and the times relative to the forward model run.
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Validation of the second order adjoint for the three-dimensional chemical transport model against finite difference of first order
ts. (a) second order adjoint r for the reference run (b) finite difference Dk of first order adjoints (perturbed minus reference).
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values). The difference Dk of first order adjoints computed in the perturbed run and in the reference run is
shown in Fig. 3(b) (ground level values). The second order adjoint is very similar to the finite difference of first
order adjoints, confirming the correctness of our implementation.

5.3.2. Validation of hessian symmetry

Some of the applications discussed next (optimization, Hessian eigenvalue decomposition) require the Hes-
sian to be symmetric. Second order adjoint methodology provides Hessian-vector products. Even if the full
Hessian of the cost function (56) is not available we check its symmetry as follows.

The Hessian product with two vectors dy1 and dy2, are computed starting from the same set of initial con-
centrations y0,
Table
Result

Test

1

2

r1 ¼ Hðy0Þ � dy1; r2 ¼ Hðy0Þ � dy2
and dot products are taken between the second order adjoints and the perturbations. The two dot products are
equal if the computed Hessian is symmetric
ðdy2ÞT � r1 ¼ ðdy2ÞT �Hðy0Þ � dy1 ¼ ðdy1ÞT �Hðy0Þ � dy2 ¼ ðdy1ÞT � r2:
In our experiments we set the first vector to be the set of initial conditions, dy1 ¼ y0. The second vector is cho-
sen in two ways. First, dy1 is advanced from t0 to tF using the tangent linear model and dy2 is taken to be the
solution of the tangent linear model at the final time. Second, dy2 is taken to be a vector with random entries
(scaled element-wise by y0 to preserve the relative magnitude among concentrations of different species).

For each test we run 1 h, 4 h and 8 h simulations. The results are shown in Table 4. The two products are
close to each other in both tests, which indicates that the Hessian (computed by the second order adjoint
method) is symmetric. Small differences are acceptable considering the large size of the vectors (105).

5.4. Data assimilation using second order information

The minimization problem (56) arising in data assimilation is large-scale, with the typical number of control
variables in chemical transport models ranging between 104–107. In our experiments we minimize (56) for the
initial ozone conditions, which amounts to 11,550 control variables. In this section we investigate the perfor-
mance of different numerical optimization methods. The first and second order derivatives (where needed) are
computing according to (57) and (58).

Large-scale unconstrained optimization solvers are discussed in [54,57,58]. Two classes of numerical opti-
mization methods are popular in variational data assimilation: quasi-Newton and nonlinear conjugate gradi-
ents. They require only first order gradient information, and can handle very large scale and highly nonlinear
problems. In our numerical tests we consider one method from each class to minimize (56).

Comparisons of different optimization methods for data assimilation with fluid flow models are given in
[1,21]. Quasi-Newton methods approximate the inverse of the Hessian matrix by a symmetric positive definite
matrix, which is updated at every step using the new search directions and the new gradients. The Broyden
Fletcher Goldfarb Shanno (BFGS) Hessian update formula [56] has proved effective in many applications.
The limited-memory version (L-BFGS) [51] can handle very large problems by storing only a finite number
of search directions and gradients used in the approximation of the inverse Hessian. The L-BFGS-B
implementation of Zhu et al. [75] and Byrd et al. [8] is able to handle bound constraints and has become
the gold standard in variational data assimilation. In our previous data assimilation work [15,22,66] we have
4
s for Hessian symmetry tests

Product 1 h 4 h 8 h

ðdy1ÞT � r2 2.5837e + 4 1.8897e + 5 3.2224e + 5
ðdy2ÞT � r1 2.4010e + 4 1.8806e + 5 3.1812e + 5
ðdy1ÞT � r2 1.3012e + 4 9.8862e + 4 1.8372e + 5
ðdy2ÞT � r1 1.3012e + 4 9.8705e + 4 1.8316e + 5
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successfully used this package for chemical data assimilation with full 3D models. This L-BFGS-B implemen-
tation [8,75] is used for the numerical results reported in this paper.

Extensions of the linear conjugate gradients method to non-quadratic problems have been extensively stud-
ied [58]. The basic idea is to express the new search directions recursively as linear combinations of the negative
gradients and previous search directions. Different coefficients for the linear combination lead to different meth-
ods including Fletcher-Reeves, Polak-Ribiere, Hestenes-Stiefel, etc. The numerical tests reported in this paper
use the CG+ Conjugate Gradient package of Liu, Nocedal and Walz [34] with the Fletcher-Reeves version of
nonlinear conjugate gradients (FR-CG). Additional tests (not reported here) have shown that FR performs
slightly better than the other nonlinear conjugate gradient methods for the test problem under consideration.

We next discuss two optimization methods that use second order information in the form of Hessian-vector
products. The first method is a version of nonlinear conjugate gradients that uses Hessian-vector products to
compute search directions. The second is the Hessian-free Newton method, which approximately solves the
Newton’s equation using an iterative method that requires only Hessian-vector products.
5.4.1. Daniel’s nonlinear conjugate gradients

Daniel’s nonlinear conjugate gradients method [24–27] uses explicit Hessian-vector products in the calcu-
lation of the new search direction. This approach has been traditionally considered impractical for large-scale
optimization problems due to the need for second order information [37]. Since second order adjoints can pro-
vide Hessian-vector products efficiently we revisit Daniel’s method and use it to solve the data assimilation
problem (56).

We next describe Daniel’s method and show how it can be efficiently implemented using a single forward
and backward model run (during which both first and second order adjoints are computed). In the first step
one computes the gradient via one first order adjoint model run, and initializes the product of the Hessian and
the search direction by either running the second order adjoint model or by approximating the Hessian with
the identity matrix:

Initialization ðx0 ¼ yBÞ

0.1
 Compute in a forward–backward run g0 ¼ ðoW=oyðx0ÞÞT

0.2
 Set d0 ¼ �g0
0.3
 Compute in another forward–backward run v0 ¼ o2W=oy2ðx0Þ � d0 (or let v0 ¼ d0)
For each iteration one constructs the one-dimensional quadratic model along the search direction, updates
the point in state space, updates the gradient, the search direction and the product between the Hessian and
the search direction. The computational cost at each step is dominated by one forward–backward run with the
gradient evaluated by first order adjoint and two Hessian-vector products evaluated by the second order
adjoint. Note that two Hessian-vector products can be computed simultaneously in a single backward run,
and computational savings are possible by reusing the LU decompositions.

For k P 1 (x ¼ xk, dk, gk ¼ oW=oyðxkÞ, and vk ¼ o2W=oy2ðxkÞ � dk)
k.1
 Find ak via line-search such that Wðxk þ adkÞ 6 WðxkÞ þ cagT
k dk)
k.2
 Update the solution: xkþ1 ¼ xk þ akdk
k.3
 Compute in a single forward–backward run:

gkþ1 ¼ ðoW=oyðxkþ1ÞÞT

akþ1 ¼ o2W=oy2ðxkþ1Þ � gkþ1
bkþ1 ¼ o2W=oy2ðxkþ1Þ � dk
k.4
 Compute bk ¼ ðgT
kþ1vkÞ=ðdT

k vkÞ (which ensures that dT
kþ1o

2W=oy2ðxkÞdk ¼ 0)

k.5
 Update the search direction: dkþ1 ¼ �gkþ1 þ bkdk
k.6
 Update the product: vkþ1 ¼ o2W=oy2ðxkþ1Þ � dkþ1 ¼ �akþ1 þ bkbkþ1
Here we denote by xk the vector of initial concentrations y0 after k optimization iterations.
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5.4.2. Hessian-free Newton

The minimization of (56) can be carried out in principle using Newton’s method. With xk denoting the value
of the solution after k Newton iteration the process is
o2W
oy2
ðxkÞ

� �
� Dx ¼ oW

oy
ðxkÞ

� �T

;

xkþ1 ¼ xk � Dx; k ¼ 0; 1; . . .

ð59Þ
Each iteration requires to solve a linear system. The system matrix is the Hessian and the right hand side vec-
tor the gradient computed at the current iterate. Since the Hessian is a large symmetric matrix, a sensible ap-
proach is to solve the system using the linear conjugate gradients iterative method. The linear system solution
(59) needs to be only as accurate as the solution of the nonlinear system. Therefore one can stop the conjugate
gradient process after only a few iterations. Moreover, the conjugate gradients algorithm only requires matrix
times vector products. The Hessian-vector products needed are computed by the second order adjoint. Be-
cause the full Hessian is not required the approach is called Hessian-free Newton (HFN).

Consequently each outer Newton iteration requires several inner iterations of the linear conjugate gradients
to solve (59). Each of the inner iterations performs one forward integration of the forward and the tangent
linear models (57), followed by one reverse integration of the first and second order adjoint models (58).
The computational cost of each inner iteration is therefore relatively expensive.

For the numerical experiments we use the HYBRID code of Morales and Nocedal [55] to test the stand-
alone HFN method. This code also implements an enriched optimization algorithm that allows to interlace
L-BFGS and HFN iterations and use the information collected by one type of iteration to improve the per-
formance of the other. We will refer to the enriched method as the ‘‘HYBRID” method. In the numerical
experiments reported here we alternate five L-BFGS iterations with one HFN iteration.

5.4.3. Optimization results
Data assimilation experiments use a 12 h data assimilation window which starts at 12 GMT (8 EDT) on

July 20th, 2004. We asses the performance of five optimization methods used to minimize the cost function
(56). L-BFGS-B and the Fletcher-Reeves Nonlinear Conjugate Gradients (FR-CG) methods require only first
order derivative information. Daniel Nonlinear Conjugate Gradients (Daniel-CG), HFN and the HYBRID
methods require second order derivative information. Since L-BFGS-B is considered the gold standard in var-
iational data assimilation we will use its solution as a reference.

When solving real large-scale variational data assimilation problems with very expensive evaluations of the
function, the gradient and the Hessian-vector products the optimization process is typically not run to con-
vergence. In practice the number of iterations is predefined (based on an estimate of the feasible computational
time). Following this approach in our numerical experiments each method is allowed to take a fixed number of
ten iterations. Each iteration of L-BFGS-B founds a new solution point (‘‘NEW_X”), and can use multiple
model runs during the line search. For HFN we consider ten outer (Newton) iterations; each iteration founds
a new solution point, and can use multiple inner (linear conjugate gradients) iterations. For the Fletcher-
Reeves and the Daniel nonlinear conjugate gradients each iteration produces a new solution point.

The decrease of the cost function with the number of iterations is reported in Fig. 4(a). All methods are able
to drive the cost function from a value of about 55,000 down to about 14,000 after ten iterations. Beyond ten
iterations further decrease in the cost function is small, indicating that all solutions have approached a local
minimum.

The decrease of the cost function versus the computational time is reported in Fig. 4(b). On the abscissa we
use scaled time units, where one unit is the CPU time of one forward run (with only the nonlinear model, and
without any derivative calculations). The cost of each optimization is estimated based on the number of model
runs and the relative timings for the first and second order adjoint calculations given in Table 3. The results in
Fig. 4(b) indicate that L-BFGS-B method is the most efficient method. Daniel’s CG method performs better
than FR-CG, especially during the first few iterations. HFN converges toward the solution in a small number
of outer iterations, but at the cost of many inner iterations. This makes the total computational cost of HFN
to be the highest among all methods. The HYBRID method starts with five L-BFGS iterations, and during
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Fig. 4. Decrease of the cost function with (a) the number of iterations and with (b) the scaled CPU time. The relative performance of five
different optimization methods is shown. (a) Decrease of the cost function vs. number of iterations. (b) Decrease of the cost function vs.
scaled CPU time.
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them its performance is similar to that of L-BFGS-B. After the HFN step the HYBRID method becomes
slightly slower than L-BFGS-B.

The quality of each optimization solution is measured by the norm of the gradient of the cost function, and
by the R2 correlation factor and root mean square (RMS) difference between the observations and the model
predictions (when the model is initialized with the solution of the optimization process y0 ¼ ya). The R2 cor-
relation factor and the RMS difference between the set of all individual observations zi; i ¼ 1; . . . ;m in the
assimilation window and the set of all corresponding model predictions ðDyÞi are defined as follows
Table
The qu
betwee

koW=o
RMS
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m
Pm

i¼1ðDyÞ2i �
Pm
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RMSðDy; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm

i¼1

ððDyÞi � ziÞ2
s

:

Table 5 shows the norm of the gradient of the cost function, the R2 correlation factor, and the RMS dif-
ference between observations and model predictions when initialized with the background and with each of
the optimization solutions. A good solution has a small norm of gradient, a small RMS difference between
observations and model predictions, as well as a large correlation coefficient between observations and model
predictions.

The results in Table 5 indicate that all optimized solutions show a considerable improvement from the
background state. Model predictions are much closer to the observations (in both the R2 and the RMS met-
rics) when the simulation is initialized with any of the optimal solutions. The norm of gradient indicates that
the L-BFGS-B and Daniel solutions are the closest to the optimum, while the HFN solution is the farthest.
Overall the L-BFGS-B solution is slightly better than the others, and considering the computational time
we conclude that L-BFGS-B performs best on the data assimilation problem under consideration.

The scatter and quantile–quantile plots of Fig. 5 also illustrate how the correlation between model predic-
tions (represented on the y-axes) and the observations (represented on the x-axes) is improved through data
5
ality of different optimized solutions measured by the norm of gradient, the correlation coefficient and root mean square distance
n model predictions and observations

BG L-BFGS FR-CG Daniel-CG HFN HYBRID

yk 4147.38 493.09 757.70 490.61 795.83 559.46
24.76 11.94 12.67 12.68 12.93 12.24
0.15 0.68 0.65 0.64 0.64 0.67
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Fig. 5. Scatter plots and quantile–quantile plots of model-observations agreement: (a) before data assimilation and (b) after data
assimilation. The solutions obtained with different optimization methods show a similar agreement with observations. (a) Background
ðR2 ¼ 0:15Þ and (b) assimilated ðR2 P 0:64Þ.
assimilation. The background case shown in Fig. 5(a) has a correlation coefficient R2 ¼ 0:15. The spread of the
scatter plot is large, and the quantile–quantile plot shows a visible bias. Fig. 5(b) shows the scatter and the
quantile–quantile plots after data assimilation. The spread of the scatter plot is much smaller, which is quan-
tified by the larger correlation coefficients between model predictions and observations ðR2 P 0:6Þ. The solu-
tions are started from the optimized initial conditions computed with the L-BFGS-B, Daniel-CG and HFN
methods. We see that L-BFGS-B, Daniel-CG, and HFN quantile–quantile plots overlap with the ideal line
for most of the range of values, showing a considerable decrease in model results bias.

The ground level ozone fields at 3 pm EDT of July 20, 2004 using L-BFGS-B solutions as initial conditions
are shown in Fig. 6. Visually there is a better agreement between model predictions and observations after
assimilation, especially near the West boundary.

To show the time evolution of ground level ozone concentrations we select four AirNow stations A–D,
shown in Fig. 2(b). The ozone time series initialized using the background and different optimized solutions
at these four stations are illustrated in Fig. 7. The ozone time series after data assimilation are much closer to
observations than the non-assimilated time series, which indicates the improvement in model predictions after
data assimilation. The time series initialized with different optimized conditions are very similar, indicating
that all optimization methods find the same optimum point.

5.5. Uncertainty quantification

When the model is linear, and the background and observation uncertainties are Gaussian, the aposteriori
probability density of the initial state is also Gaussian (with mean ya and covariance P aðt0Þ, i.e.,
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Fig. 7. Time series (in EDT time) of ozone concentrations at the four selected stations. The model runs are initialized with the background
ozone concentration and with the assimilated ozone fields obtained with L-BFGS-B, HFN and Daniel-CG optimization methods. The
ozone time series after data assimilation are much closer to observations. (a) Station A, (b) Station B, (c) Station C and (d) Station D.
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y0 2 N ðya; P aðt0ÞÞ). In this case the cost function (56) is quadratic and represents the negative logarithm of the
aposteriori Gaussian probability density function
Wðy0Þ ¼ � log paðy0Þ;

paðy0Þ ¼ const	 exp � 1

2
ðy0 � yaÞTðP aðt0ÞÞ�1ðy0 � yaÞ

� �
:

It is easy to see that the Hessian of the cost function equals the inverse of the aposteriori covariance matrix,
o

2W=oy2 ¼ ðP aðt0ÞÞ�1.
For nonlinear models with non-Gaussian uncertainty probability densities one solves the nonlinear mini-

mization problem (56) to obtain the analyzed initial condition
ya ¼ arg min
y0

Wðy0Þ:
The Hessian of the cost function (56), evaluated at the optimal initial condition ya, offers an approximation of
the aposteriori covariance matrix of the uncertainty in the analyzed initial conditions:
P aðt0Þ � o2W
oy2
ðyaÞ

� ��1

: ð60Þ
We expect this to be a good approximation if the errors are relatively small, if their propagation in time obeys
the tangent linear model, and if the distribution of uncertainty is not far from Gaussian.

Our goal is now to characterize the aposteriori errors, i.e., to quantify the uncertainty in the initial state ya

after the assimilation of observations. For this let ðkP
i ; viÞ; i ¼ 1; . . . ; n, be the eigenvalue–eigenvector pairs of
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the aposteriori covariance matrix P aðt0Þ. The eigenvectors are orthogonal to each other (because of symmetry)
and have norm one. Moreover, all the eigenvalues are non-negative kP

i P 0.
Under the Gaussian assumption the aposteriori error in the initial condition is a Gaussian random process

which can be described in terms of the eigenvalues and eigenvectors of the covariance matrix
Table
The sm

kH
smallðm

kP
largeðmffiffiffiffiffiffiffiffi
kP

large

q
kH

largeðm
kP

smallðmffiffiffiffiffiffiffiffi
kP

sma

q

Err ¼ y0 � ya ¼
Xn

i¼1

ni

ffiffiffiffiffi
kP

i

q
vi; ni 2 N ð0; 1Þ; ð61Þ
where ni are independent Gaussian random variables. The principal components
ffiffiffiffiffi
kP

i

q
vi of the aposteriori er-

ror are along the directions of the largest eigenvalues of the covariance matrix. According to (60) the largest
eigenvalues of the covariance matrix are (approximated by) the inverses of the smallest Hessian eigenvalues
kP

i ¼ 1=kH
i , while the corresponding eigenvectors are the same. To characterize the a posteriori error we esti-

mate its principal components (61) from the Hessian eigenvalues and eigenvectors as follows.
The largest five and the smallest five eigenvalues of the Hessian of the cost function are computed using the

ARPACK package [48]. The simulation is initialized with the optimal solution ya of the data assimilation
problem given by L-BFGS-B. The second adjoint model is used to provide the Hessian-vector products
required by ARPACK. These eigenvalues are reported in Table 6. The inverses of the Hessian eigenvalues
approximate the eigenvalues of the aposteriori covariance matrix P aðt0Þ and are also reported in Table 6.
These eigenvalues represent variances of the principal components (61) in the units (molecules of O3 per
cm3 of air)2. The square root of the covariance eigenvalues represent the standard deviations of each of the
principal components; we report the standard deviations in the more convenient units of parts-per-billion
(ppb). The conversion is done by dividing the concentration to the ground level air density
(q ¼ 2:4	 1019 mol=cm3) and multiplying the results by 109. We see that the error is dominated by the first
principal component (along which the standard deviation is 47 ppb).

To visualize the spatial distribution of the error we plot the 2 ppb isosurface of the first principal error com-

ponent
ffiffiffiffiffi
kP

1

q
v1 in Fig. 8. The unit conversion from mol/cm3 to ppb is done using the appropriate air density in

each vertical layer. The principal component the error is located at high altitudes. This can be explained by the
dense observational network at the ground level used in this data assimilation study, see Fig. 2; the assimila-
tion of these observations reduces the uncertainty in ozone initial concentrations at low altitudes. In contrast
the number of observations at high altitudes is low and considerable uncertainty remains after data assimila-
tion. One possible conclusion is that more high altitude observations are needed to further reduce the global
level of uncertainty.

5.6. Directions of important error growth

We now look into the problem of how uncertainties propagate forward in time through the model. Specif-
ically we want to estimate which perturbations at the initial time grow to have the largest impact on the solu-
tion accuracy at the final time. These ‘‘directions of maximal error growth” [5] are important in several
applications. First, in order to have an accurate forecast (an accurate solution at the final time) one needs
to reduce the uncertainty in the initial state along these directions [50]. New observations added to increase
6
allest and largest five eigenvalues of the Hessian and the corresponding eigenvalues of the aposteriori covariance matrix

First Second Third Fourth Fifth

lc=cm3Þ�2 7:54	 10�25 1:15	 10�23 4:04	 10�23 8:47	 10�23 1:42	 10�22

lc=cm3Þ2 1:33	 1024 8:70	 1022 2:48	 1022 1:18	 1022 7:04	 1021ffiffi
ðppbÞ 47 12 7 4 3

lc=cm3Þ�2 4:17	 10�22 3:79	 10�22 3:34	 10�22 2:76	 10�22 2:12	 10�22

lc=cm3Þ2 2:40	 1021 2:64	 1021 3:00	 1021 3:62	 1021 4:72	 1021ffiffiffi
ll (ppb) 2.04 2.14 2.28 2.51 2.86



Fig. 8. First principal component of the error in the initial ozone filed. The 2 ppb error isosurface is shown in (a) 3D view, (b) top view and
(c) east view. (a) 3D view, 2 ppb error, (b) top view, 2 ppb error, (c) east view, 2 ppb error.
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the accuracy of the simulation (through data assimilation) are most useful if placed along these directions [49].
Next, in a Monte Carlo approach, a small ensemble of runs can represent well the uncertainty in a large-
dimensional system if it is initialized with perturbations along the directions of maximal error growth [4].

Following (4) and (5) we denote by N
0
, N

0�
the tangent linear and the adjoint model solution operators on

the interval ½t0; tF�. The model is initialized at t0 with the optimal state ya (for which the error covariance is
P aðt0Þ). Perturbations (small errors) in the initial conditions dy0 propagate forward in time according to the
tangent linear model (21), and grow at the final time to
dyðtFÞ ¼ N
0dy0: ð62Þ
The error covariance matrix P aðt0Þ evolves into the forecast error covariance matrix at tF
P f ðtFÞ ¼ N
0 � P aðt0Þ �N 0�

:

The principal components of the forecast uncertainty (uncertainty at the final time) are along the dominant
eigenvectors of the forecast error covariance matrix P f ðtFÞ. We want to find the directions dy0 at the initial
time which grow through (62) into the dominant eigenvectors of P f at the final time. We have that:
P f ðtFÞdyðtFÞ ¼ hmaxdyðtFÞ () ðN 0 � P aðt0Þ �N 0�ÞN 0dy0 ¼ hmaxN
0dy0

() N
0�
N
0dy0 ¼ hmaxðP aðt0ÞÞ�1dy0:
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The inverse covariance matrix can be approximated by the Hessian of the cost function (60). We see that the
dominant eigenvectors in this case are the solution of the generalized eigenvalue problem
Table
The la

h

N
0�
N
0dy0 ¼ hmax

o2W

oðy0Þ2
ðyaÞ

 !
dy0: ð63Þ
The generalized eigenvectors in (63) are called Hessian singular vectors in the data assimilation literature [4].
The matrix times vector products N

0�
N
0dy0 needed to evaluate the left hand side are computed by one forward

integration of the TLM ðdyðtFÞ ¼ N
0dy0Þ followed by one backward integration of the adjoint ðN 0�dyðtFÞÞ.

The adjoint variable is initialized with the final value of the TLM integration. The Hessian times vector prod-
ucts needed to evaluate the right hand side are obtained by the second order adjoint.

For numerical experiments we run the STEM model for 8 h. The simulation is initialized with the optimal
solution of the data assimilation problem given by L-BFGS-B. The dominant generalized eigenvalues (63) are
computed using the JDQZ package which implements a Jacobi–Davidson algorithm [69]. Table 7 shows the
7
rgest five Hessian singular eigenvalues

First Second Third Fourth Fifth

0:16	 10�15 0:12	 10�15 0:66	 10�16 0:59	 10�16 0:17	 10�17

Fig. 9. The 0.02 isosurface of the dominant Hessian singular vector: (a) 3D view, (b) top view and (c) east view.
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largest five generalized eigenvalues (63). We see that the fifth generalized eigenvalues is two orders of magni-
tude smaller than the first. few directions at the initial time have a large impact on the final time uncertainty.
Fig. 9 presents the Hessian singular vector associated with the largest generalized eigenvalue in Table 7. Most
of the area where initial perturbations have a large impact is at high altitudes, which is not surprising given
that most of the uncertainty in the ozone field is at high altitudes.

6. Conclusions

In this paper we discuss the computation of second order adjoints for stiff systems and their application in
chemical transport modeling. First order adjoints allow to efficiently calculate the derivative of a cost func-
tional (defined on the model output) with respect to a large number of model parameters. Second order
adjoints allow to efficiently calculate products between the Hessian of the cost functional and user defined
vectors.

One important component of chemical transport models is the solution of stiff chemical kinetics. We derive
the second order discrete adjoint formulations for three classes of stiff numerical solvers: fully implicit Runge–
Kutta, single diagonally implicit Runge–Kutta, and Rosenbrock methods. For each we discuss in detail effi-
cient implementation aspects which are based on reusing the expensive LU decompositions. Specifically the
tangent linear model calculations ‘‘piggyback” the forward model calculations and use the same LU decom-
positions. Similarly the second order adjoint calculations ‘‘piggyback” the first order adjoint calculations and
reuse the same Jacobians and LU decompositions.

The other important component of chemical transport models are the convection and diffusion processes.
The discrete second order adjoints for the transport solution use the same routines as the first order adjoints.
This is due to the linear finite difference discretization of the convection and diffusion terms used in the model
under consideration.

The first application of second order adjoints is to extend the validity range of sensitivity analysis to larger
perturbations. We illustrate how in a nonlinear chemical box model the change in the final peroxy acetyl
nitrate concentration due to changes in initial NOX concentrations is predicted poorly by the first order sen-
sitivity analysis. The prediction is considerably improved with second order sensitivity analysis. Second order
adjoints can be useful in chemical transport modeling to better represent the sensitivity of a given receptor
with respect to changes in initial conditions, emissions, meteorological conditions, etc. It can be useful to
quantify the sensitivity of adjoint variables (which give areas that influence a given receptor) to other model
parameters like the wind fields, etc. Finally, the sensitivity of the optimal solution in data assimilation with
respect to changes in observations, in the initial conditions, and in model parameters, can also be computed
using second order adjoints.

The use of the second order adjoints in the optimization process for chemical data assimilation is numer-
ically investigated. We consider two methods that require Hessian-vector products in addition to gradient
information: the Hessian-free Newton method and the Daniel nonlinear conjugate gradients. For reference
we employ two methods that require only first order derivative information: the Fletcher-Reeves nonlinear
conjugate gradients and the limited memory BFGS quasi-Newton method. L-BFGS is considered the gold
standard in data assimilation. We also consider a hybrid method that interlaces L-BFGS and HFN itera-
tions. Each iteration of the methods that require Hessian-vector products is more expensive than an itera-
tion of methods that require only gradient information; therefore the question arises whether the
computation of the second order information pays off during the optimization process. For the test problem
under consideration L-BFGS is still the most effective method, followed closely by Daniel’s nonlinear con-
jugate gradients. Hessian-free Newton converges in a small number of iterations but the overall computa-
tional cost is relatively large. Until recently the use of second order information in large-scale data
assimilation problems was considered prohibitive. Methods that require only gradient information have been
studied extensively, and the software that implements them is quite mature. In the authors opinion the pos-
sibility to compute efficiently Hessian-vector products via second order adjoint modeling opens the door for
new research to develop numerical optimization algorithms that can use effectively this information. Future
work will be devoted to developing new optimization methods that can make efficient use of Hessian-vector
products.



The Hessian evaluated at the optimal initial condition provides an approximation of the inverse aposteriori
error covariance matrix. The eigenvectors of the Hessian associated with its smallest eigenvalues approximate
the principal components of the aposteriori error field. This allows to estimate the remaining errors in the dis-
tribution of pollutants after data assimilation. In this paper we illustrate this uncertainty quantification
method and compute the first five principal components of the error in the ozone field. The data assimilation
test problem under consideration incorporates observations from a dense network at ground level; after data
assimilation the largest levels of uncertainty are at high altitudes, where the observational network is sparse.

Some perturbations at the initial time grow to have the largest impact on the solution accuracy at the final
time. These ‘‘most important directions of error growth” can be estimated using second order information.
Specifically the Hessian singular vectors are those directions at the initial time which grow into the dominant
eigenvectors of the covariance matrix at the final time. We illustrate their computation via the solution of a
generalized eigenvalue problem, where the right hand side matrix is the Hessian of the cost function. For
our test problem the most important initial time perturbations are also at high altitudes.

The efficient calculation of second order adjoints for three-dimensional atmospheric chemistry and trans-
port models is demonstrated in this paper. While the cost of a first order adjoint computation is slightly over
two times the cost of a forward simulation, the cost of a second order adjoint calculation is three and a half
times the cost of a forward model run. The availability of Hessian-vector products opens the door for new
analyses with chemical transport models. It allows to extend the validity of sensitivity analysis to large pertur-
bations of the parameters. A quantification of uncertainty after data assimilation becomes possible. The Hes-
sian-vector products allow to estimate the most important directions of error growth. Second order
information is also useful in the large-scale numerical optimization routines for data assimilation, but more
work is needed to make these optimization methods competitive with quasi-Newton methods.
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Appendix A. The ODE model, the Jacobian and the Hessian

In this paper we consider all vectors to be column vectors. Gradients of scalar functions are by default row
vectors. An upper script ð�ÞT denotes the transposition operator.

The first and second derivatives of a scalar function are
W : Rn ! R ) oW
oy
¼ oW

oy1

; . . . ;
oW
oyn

� �
and

o
2W
oy2
¼

o2W
oy2

1

� � � o2W
oy1oyn
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o2W
oynoy1
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oy2
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2
6664

3
7775:
The Jacobian of a multidimensional vector function is represented as
h : Rn ! Rm; hðyÞ ¼

h1 y1 � � � ynð Þ
..
.

hmðy1 � � � ynÞ
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775 ) oh
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oyn

2
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3
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Consider a coupled system of stiff nonlinear differential equations which constitute the forward model
dy
dt
¼ f ðt; yÞ; yðt0Þ ¼ y0; t0

6 t 6 tF:
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The Jacobian of the time derivative function is
J i;jðt; yÞ ¼
ofiðt; yÞ

oyj

; 1 6 i; j 6 n:
The Hessian contains second order derivatives of the time derivative functions. More exactly, the Hessian is a
3-tensor such that
H i;j;kðt; yÞ ¼
oJ i;jðt; yÞ

oyk

¼ o
2fiðt; yÞ
oyj oyk

¼ o
2fiðt; yÞ
oyk oyj

¼ Hi;k;jðt; yÞ; 1 6 i; j; k 6 n:
For each component i of the ODE derivative function there is a Hessian matrix Hi;:;:.
The Hessian allows to conveniently express the derivatives of the Jacobian times a user vector:
o

oy
½Jðt; yÞ � u� ¼ o

oyj

½Jðt; yÞ � u�i

 !
i;j

¼ o

oyj

Xn

m¼1

J i;mðt; yÞum

" # !
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umH m;i;jðt; yÞ
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i;j

¼ uT � Hðt; yÞ:
For any vectors u; v 2 Rn we have that
o

oy
½Jðt; yÞ � u� � v ¼ ðHðt; yÞ � uÞ � v ¼

Xn

j;m¼1

Hi;j;mðt; yÞumvj ¼
Xn

j;m¼1

H i;m;jðt; yÞvjum ¼ ðHðt; yÞ � vÞ � u
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and
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